Sickle Cell Disease and the Brain

Kevin Kuo, MD, FRCPC
Red Blood Cell Disorders Program
Toronto General Hospital

July 28, 2012
Disclosure

• Nothing to disclose
Outline

• Signs and symptoms of stroke
• Epidemiology of stroke
• Treatment and prevention of stroke
• Chronic transfusion and stroke
 – STOP and STOP2 studies
• Hydroxyurea as an alternative
 – SWiTCH and TWiTCH studies
• Uncertainties in the diagnosis and management of Silent Infarct
 – SIT study
• Discussion
What is stroke?

- Sudden loss of blood circulation to an area of the brain
- Corresponding loss of neurological function
- Ischaemic
 - Large artery
 - Small vessel
 - Cardioembolic
- Haemorrhagic
- Transient Ischaemic Attack (TIA)
 - Temporary loss of blood circulation
 - Symptoms usually resolve in 24 hours
Brain Anatomy
LATERAL SURFACE OF CEREBRUM SHOWING AREAS OF FUNCTIONAL LOCALIZATION

- Generalized & Coordinated Movements
- Skilled Movements
- Tactile Sensation
- Stereognosis
- Proprioception
- Sensory Combination and Interpretation
- Visual
- Reading
- Verbal (Speech & Interpretation)
- Auditory Memories
- Musical
- Visual Memories
- Fear
- Memories
- Bodily Reaction
- Emotional Reaction
- Writing
- Intellect
- Judgement
- Reflection
- Creative Thought
- Activation
- Adverse Movements
- General Movements

*Note: Anterior parietal (postcentral sulcal) artery also occurs as separate anterior parietal and postcentral sulcal arteries.
Anatomy of a Stroke

http://www.ajnr.org/content/27/4/728/F2.large.jpg
Signs and Symptoms of Stroke

- One-sided weaknesses and/or sensory changes (numbness, tingling)
- Loss of balance
- Vision loss
- Slurring of speech
- Seizures
- Typically one or few symptoms predominates
Spectrum of SCD Complications

These mechanisms are not mutually exclusive

Hemolysis, endothelial dysfunction
- Precapillary arteriole
- Smooth muscle cells
- Erythrocyte
- Endothelial cells
- Arg → NO → O2
- NOS
- XO
- NO → ET-1

Viscosity, vaso-occlusion
- Capillary
- Postcapillary venule
- Monocyte
- Platelets
- αβ;
- VCAM-1

Decreased NO bioactivity
- Pulmonary hypertension
- Leg ulceration
- Priapism
- Stroke

Increased vaso-occlusion
- Pain crisis
- Acute chest syndrome
- Osteonecrosis
Natural History of Cerebral Vasculopathy in SCD

Adams RJ. Big strokes in small persons. Arch Neurol. 2007 Nov;64(11):1567-74
Risk of Hemorrhagic and Infarctive Stroke Changes with Age

Measurement of Transcranial Doppler Velocity Via Ultrasonography

- Standard of care
- Ultrasound Doppler aimed at the MCA
- Measures peak velocity of blood flow
- High velocity = stenosis and vasculopathy (like a narrowed garden hose)
- > 200 cm/s (= abnormal) associated with 40% risk of stroke within 3 years
- Performed annually
- From the time when the baby can lay still (~ 2 years-old) until the bone window closes (early/late teens)

Adams RJ. Big strokes in small persons. Arch Neurol. 2007 Nov;64(11):1567-74
Epidemiology of CVA in SCD

High TCD → Stroke → Low TCD → STOP, STOP2 → High TCD

10% Stroke
90% Cohort studies
STOP Study Design

• Patients:
 – SCD patients (SS, S/β0 thal), Age 2 to 16
 – Transcranial Doppler Velocity > 200 cm/s
 – No history of stroke

• Study design:
 – Randomized to transfusion vs. no transfusion (standard of care)
 – Transfusion target: pre-transfusion HbS < 30%, Hb < 120, Hct < 0.360
 – Patients can achieve target by simple or exchange transfusion

• Primary end-point:
 – cerebral infarction and hemorrhage, diagnosed by MRI

STOP Study Results

<table>
<thead>
<tr>
<th></th>
<th>Transfusion</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>No stroke</td>
<td>62</td>
<td>56</td>
</tr>
</tbody>
</table>

- RRR = 0.903

STOP2 Study

• Patients:
 – SCD patients (SS, S/β₀ thal), Age 2 to 16, from STOP study
 – On transfusion for > 30 months with HbS < 30% 2/3 of the time
 – Normal TCD, No stroke
• Study design:
 – Randomized to continued transfusion vs. no transfusion
 – Transfusion target: pre-transfusion HbS < 30%, Hb < 120, Hct < 0.360
 – Patients can achieve target by simple or exchange transfusion

• Primary end-point:
 – Stroke or reversion to abnormal TCD velocities

STOP2 Study Results

<table>
<thead>
<tr>
<th></th>
<th>Transfusion</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke/Abnormal TCD</td>
<td>0/0</td>
<td>2/14</td>
</tr>
<tr>
<td>No stroke</td>
<td>38</td>
<td>25</td>
</tr>
</tbody>
</table>

- All strokes or reversion to abnormal TCD velocities occurred within first 10 months
- Both strokes occurred after reversion to abnormal TCD velocities

Chronic Transfusion in SCD
Methods of Transfusion

• Simple “top-up” transfusion

• Exchange transfusion:
 – Automated exchange
 – Manual RBC Exchange Transfusion
Potential Costs with Chronic Transfusion in SCD Patients

- Potential non-infectious risks
- Alloimmunization
- Potential infectious risks (minimal)
- Transfusional iron overload
 - Side effects from iron chelators
- Financial costs to patients (loss time from work, school, etc.)
Alloimmunization in SCD Patients

• Discrepancies between donor pool and recipient ethnicities
• 8 to 47% has been reported
• Dependent on patient age, number of donor units exposed, extent of phenotype matching
• Potential Consequences
 – Delayed hemolytic transfusion reaction (11%)
 – Autoantibody formation

Alloimmunization Examples

RHD and RHCE

- Altered C and e Ag are frequent in Africans
- Cannot be distinguished serologically, but recognized as foreign by the immune system

66% premature stop
19% gene deletion (>90% in Caucasians)

15% RHD-CE-D hybrid
Typed as D- C+
(none in Caucasians)

22% in Africans
Linked with RH-D-CE-D
Typed as D- C+
Ab with C or E like specificities

Antigen-Matching

- **C/c E/e Kell matched**

<table>
<thead>
<tr>
<th></th>
<th>Group A (n = 20)</th>
<th>Group B (n = 26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of antibodies</td>
<td>31</td>
<td>108</td>
</tr>
<tr>
<td>Common Rh alloantibodies</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 anti-E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 anti-C</td>
</tr>
<tr>
<td>Complex Rh antibodies*</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>11 anti-D (D+ patients)</td>
<td></td>
<td>4 anti-D (D+ patients)</td>
</tr>
<tr>
<td>8 anti-e (e+ patients)</td>
<td></td>
<td>6 anti-e (e+ patients)</td>
</tr>
<tr>
<td>3 anti-C (C+ patients)</td>
<td></td>
<td>20 anti-C or -Ce (C+ patients)</td>
</tr>
<tr>
<td>Other antibodies</td>
<td>9</td>
<td>56</td>
</tr>
<tr>
<td>2 anti-Jk<sup>b</sup></td>
<td></td>
<td>8 anti-K</td>
</tr>
<tr>
<td>1 anti-Fy<sup>a</sup></td>
<td></td>
<td>1 anti-N</td>
</tr>
<tr>
<td>4 anti-M</td>
<td></td>
<td>6 anti-S</td>
</tr>
<tr>
<td>1 anti-N</td>
<td></td>
<td>1 anti-Js<sup>a</sup></td>
</tr>
<tr>
<td>1 anti-Js<sup>a</sup></td>
<td></td>
<td>4 anti-Jk<sup>b</sup></td>
</tr>
<tr>
<td>RH alleles</td>
<td></td>
<td>2 anti-Jk<sup>a</sup></td>
</tr>
<tr>
<td>Hybrid RHD-CE-D and **RHCE<sup>*</sup>ce<sup>s</sup></td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Only altered RHCE<sup>*</sup>ce</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Partial RHD and altered RHCE<sup>*</sup>ce</td>
<td>9</td>
<td>14</td>
</tr>
</tbody>
</table>
Transfusional Iron Overload

- Impaired growth, infertility (Pituitary gland)
- Hypothyroidism (Thyroid gland)
- Cardiomyopathy, cardiac impairment (Heart)
- Hepatic cirrhosis (Liver)
- Diabetes mellitus (Pancreas)
- Hypogonadism (Gonadal glands)

Hydroxyurea as a Potential Alternative to Transfusion in the Treatment and Prevention of Stroke
Multiple Beneficial Effects of Hydroxyurea for SCD

Ware RE. How I use hydroxyurea to treat young patients with sickle cell anemia. Blood. 2010 Jul 1;115(26):5300-11.
Clinical Studies of Hydroxyurea in SCD

Ware RE. How I use hydroxyurea to treat young patients with sickle cell anemia. Blood. 2010 Jul 1;115(26):5300-11.
SWiTCH

• Phase III multicenter RCT, Non-inferiority
• 30 months, N = 133
• Hydroxyurea + phlebotomy vs. transfusions + chelation
• Composite primary endpoint: stroke recurrence and iron burden
• 12% had recurrent stroke prior to enrollment
• interim data analysis was performed after 1/3
• No difference in LIC
• Stroke recurrence rate: 7/67 vs. 0/66 transfusion + chelation
TWiTCH

• N = 148 planned enrollment (ages 4 to 15)
• SCA + abnormal TCD
• Transfusions + chelation vs. Hydroxyurea + phlebotomy
• Treatment duration: 24 months
• Outcome measurements: LIC, TCD, MRI
TCD Velocities Decrease with Age

Graph A: Right MCA velocities (cm/sec) vs. Age (years)

Graph B: Left MCA velocities (cm/sec) vs. Age (years)
Neurological Events in SCD

- Increasing morbidity / mortality
- Increasing neuropsychological deficits

- Neuro exam: normal, abnormal
- hemorrhage
- stroke
- high TCD, nl exam, silent infarct
- nl TCD, nl exam, silent infarct
- nl TCD, nl exam, nl MRI
- high TCD, nl exam, nl MRI
Silent Cerebral Infarcts (SCI)

- No signs or symptoms of stroke
- Normal neurologic examination
- Abnormal MRI
- Lack of concordance with TCD velocity
- Definition of abnormal MRI is constantly evolving
 - Improved imaging technologies
 - Different definitions between adults and kids
 - Area under intensive research
- What were classified as SCI previously may had subtle signs of stroke
Epidemiology of SCI

- Constantly shifting definition and lack of consensus amongst researchers
- Patient selection bias (very ill vs. not so ill)
- Lack of longitudinal studies with large number of patients
- Best guess in kids:
 - In adults: 13% in SCA vs. 2% in age- and ethnicity-matched controls without SCA
Risk Factors for SCI

• Low baseline hemoglobin level
• Higher blood pressure
• Male
• May be:
 – History of seizures
 – High white blood cell count
 – SEN β^S globin gene haplotype
Anatomic Location of SCI

• (in decreased order of likelihood)
 • Deep white matter
 – Frontal lobe
 – Parietal lobe
 • Basal ganglia
 • Thalamus
 • Temporal lobes
Detection of SCI by MRI
Effects of Silent Cerebral Infarcts

- Lower global intellectual function
- Executive functions
 - selective attention, card sorting, working memory, processing speed
- Visual motor speed
- Coordination
- Visual memory
- Verbal comprehension
- Vocabulary
- Abstract reasoning

- Poor academic achievement
Effects of Silent Cerebral Infarcts

![Bar chart showing proportion of students that required special services or were retained a grade.](chart)
Potential Treatments for SCI

• Currently no therapy has been proven to prevent the occurrence or progression of SCI

• Transfusions
 – reduce the risk of stroke in patients with SCI and abnormal TCD velocities (STOP secondary analysis)
 – Currently being evaluated as an potential option in the SIT study

• Hydroxyurea and HSCT
 – evidence from single arm studies
Silent Cerebral Infarct Multi-center Transfusion (SIT) Trial

- Study hypothesis: monthly prophylactic blood transfusion therapy in children with SCI will result in an 86% reduction in strokes or new or progressive SCIs
- Multi-center randomized-controlled trial (29 sites in US, Canada, UK, and France) over 8.5 years
- Population: Children with history of SCI
- Randomization: blood transfusion or observation x 36 months
- N = 1,880 (planned enrolment)
- Outcome: Strokes, New or enlarged SCI
- Instrument: screening, pre-randomization (baseline), and exit MRI using a designated, prospective imaging protocol

Silent cerebral infarcts occur despite regular blood transfusion therapy after first strokes in children with sickle cell disease

Monica L. Hulbert,1 Robert C. McKinstry,2,3 JoAnne L. Lacey,2 Christopher J. Moran,2 Julie A. Panepinto,4 Alexis A. Thompson,5 Sharada A. Sarnaik,6 Gerald M. Woods,7 James F. Casella,8 Baba Inusa,9 Jo Howard,9 Fenella J. Kirkham,10 Kofi A. Anie,11 Jonathan E. Mullin,12 Rebecca Ichord,13 Michael Noetzel,3,14 Yan Yan,3 Mark Rodeghier,15 and Michael R. DeBaun16

1Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; 2Department of Radiology, Washington University School of Medicine, St Louis, MO; 3Department of Pediatrics, Washington University School of Medicine, St Louis, MO; 4Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI; 5Department of Pediatrics, Northwestern University School of Medicine, Chicago, IL; 6Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; 7Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO; 8Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD; 9Guy’s and St Thomas’s National Health Service Foundation Trust, London, United Kingdom; 10University College Institute of Child Health, London, United Kingdom; 11Imperial College School of Medicine, Central Middlesex Hospital, London, United Kingdom; 12Case Western Reserve University School of Medicine, Cleveland, OH; 13Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA; 14Department of Neurology, Washington University School of Medicine, St Louis, MO; 15Statistical Collaborator, Chicago, IL; and 16Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN

An Inside Blood analysis of this article appears at the front of this issue.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

© 2011 by The American Society of Hematology
Results

• Median age at first stroke 5.4 years-old
• Median duration of follow-up 5.5 years
Progressive Vasculopathy and Silent Infarcts

No Vasculopathy

p = 0.017

+ Vasculopathy
Where to Go in the Post-STOP Era

- Stroke
- Silent infarct
- SIT trial
- What to do?
- Risk of recurrence reduced but not ameliorated
More Questions than Answers

- When to do screening MRI?
- How often should we evaluate SCA patients for SCI?
- Hydroxyurea as a therapeutic option?
- Bone marrow transplantation?
- Gene-therapy?
- Other novel therapeutic agents?
Discussion